Skip to main content
Log in

Rb localization and phosphorylation kinetics correlate with the cellular phenotype of cultured breast adenocarcinoma cells

  • Articles
  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

Retinoblastoma protein (Rb) expression has been correlated with state of differentiation, proliferation rate, and metastatic potential in breast adenocarcinomas and established cell lines. These observations, based on immunoreactivity of total Rb rather than hypophosphorylated protein, do not address the relationship between functional Rb and indicators of an aggressive transformed cellular phenotype. We hypothesized that the distribution of functional Rb and the kinetics of Rb phosphorylation would differ between cell lines representing immortalized mammary epithelium (MCF10A), differentiated nommetastatic mammary adenocarcinoma (MCF-7), and poorly differentiated, highly metastatic mammary adenocarcinoma (MDA-MB-231) and that these differences would be informative of the cellular phenotype. Direct immunofluorescence microscopy was used to compare qualitatively the subcellular localization of total and hypophosphorylated Rb protein in synchronized and asynchronous cells. This technique was also used to quantitatively assess the amounts of hypophosphorylated Rb throughout the cell cycle in these representative cell lines. Total Rb stained more prominently than hypophosphorylated Rb in the nucleus of all asynchronous cells. Rb phosphorylation was more rapid in MCF-7 cells than in MCF10A cells, whereas Rb dephosphorylation appeared deregulated in MDA-MB-231 cells. We conclude that assessment of hypophosphorylated Rb may be more useful than assessment of total Rb for the evaluation of transformed breast adenocarcinoma phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreassen, A.; Lacriox, F. B.; Villa-Moruzzi, E., et al. Differential subcellular localization of protein phosphatase-1 α, γ1, and δ isoforms during both interphase and mitosis in mammalian cells. J. Cell Biol. 141:1207–1215; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Bartek, J.; Vojtesek, B.; Grand, R.J., et al. Cellular localization and T antigen binding of the retinoblastoma protein. Oncogene 7:101–108; 1992.

    PubMed  CAS  Google Scholar 

  • Berndt, N.; Dohadwala, M.; Liu, C. W. Constitutively active protein phosphatase-1 alpha causes Rb-dependent G1 arrest in human cancer cells. Curr. Biol. 7:375–386; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Bookstein, R.; Shew, J. Y.; Chen, P. L., et al. Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 247:712–715; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Borg, A.; Zhang, Q. X.; Alm, P., et al. The retinoblastoma gene in breast cancer: allele loss is not correlated with loss of gene protein expression. Cancer Res. 52:2991–2994; 1992.

    PubMed  CAS  Google Scholar 

  • Botos, J.; Smith, R., III; Kochevar, D. T. Rb function is a better indicator of cellular phenotype in cultured breast adenocarcinoma cells than Rb expression. Exp. Biol. Med. 227: 2002.

  • Brunk, C.; Jones, K. C.; James, T. W. Assay for nanogram quantities of DNA in cellular homogenates. Anal. Biochem. 92:497–500; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Buchkovich, K.; Duffy, L. A.; Harlow, E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58:1097–1105; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Cailleau, R.; Young, R.; Olive, M., et al. Breast tumor cell lines from pleural effusions. J. Natl. Cancer Inst. 53:661–674; 1974.

    PubMed  CAS  Google Scholar 

  • Caputi, M.; Esposito, V.; Groger, A. M., et al. RB growth control evasion in lung cancer. Anticancer Res. 18:2371–2374; 1998.

    PubMed  CAS  Google Scholar 

  • Coleman, A. W.; Goff, L. J. Applications of fluorochromes to pollen biology, mithamycin and 4′6-diamidino-2-phenylindole (DAPI) as vital stains and for quantitation of nuclear DNA. Stain Technol. 60:145–154; 1985.

    PubMed  CAS  Google Scholar 

  • Cowell, J. K.; Bia, B.; Akoulitchev, A. A novel mutation in the promoter region in a family with a mild form of retinoblastoma indicates the location of a new regulatory domain for the RB1 gene. Oncogene 12:431–436; 1996.

    PubMed  CAS  Google Scholar 

  • Dublin, E. A.; Patel, N. K.; Gillet, C. E., et al. Retinoblastoma and p16 proteins in mammary carcinoma: their relationship to cyclin D1 and histopathological parameters. Int. J. Cancer 79:71–75; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Ellenberg, J.; Siggia, E. D.; Moreira, J. E., et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138:1193–1206; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Ezhevsky, S. A.; Nagahara, H.; Vocero-Arbani, A. M., et al. Hypo-phosphorylation of the retinoblastoma protein (pRb) by cyclin D:Cdk4/6 complexes results in active pRb. Proc. Natl. Acad. Sci. USA 97:10699–10704; 1997.

    Article  Google Scholar 

  • Fujita, T.; Ohtani-Fujita, N.; Sakai, T. Identification of an RB-responsibe region in the 5′ untranslated region of the RB gene. Cancer Lett. 101:149–157; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y. K.; T'Ang, A. The role of the retinoblastoma gene in breast cancer development. in: Dickinson, R. B.; Lippman, M. E., ed. Genes, oncogenes, and hormones: advances in cellular and molecular biology of breast cancer. Boston, MA: Kluwer Academic Publishers; 1991:59–68.

    Google Scholar 

  • Gope, R.; Gope, M. L. Abundance and state of phosphorylation of the retinoblastoma susceptibility gene product in human colon cancer. Mol. Cell. Biochem. 110:123–133; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Gottardis, M. M.; Saceda, M.; Garcia-Morales, P., et al. Regulation of retinoblastoma gene expression in hormone-dependent breast cancer. Endocrinology 136:5659–5665; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Gouyer, V.; Gazzeri, S.; Brambilla, E., et al. Loss of heterozygosity at the RB locus correlates with loss of RB protein in primary malignant neuroendocrine lung carcinomas. Int. J. Cancer 58:818–824; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Gray-Bablin, J.; Zalvide, J.; Fox, M. P., et al. Cyclin E, a redundant cyclin in breast cancer. Proc. Natl. Acad. Sci. USA 93:15215–15220; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Harbour, J. W.; Lai, S.-L.; Whang-Peng, J., et al. Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science 241:353–357; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Helin, K. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8:28–35; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Herwig, S.; Strauss, M. The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. Eur. J. Biochem. 246:581–601; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Horowitz, J. M.; Park, S. H.; Bogenmann, E., et al. Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells. Proc. Natl. Acad. Sci. USA 87:2775–2779; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz, K. B.; Zava, D. T.; Thilagar, A. K., et al. Steroid receptor analyses of nine human breast cancer cell lines. Cancer Res. 38:2434–2437; 1978.

    PubMed  CAS  Google Scholar 

  • Jaumot, M.; Estanyol, J. M.; Serratosa, J., et al. Activation of cdk4 and cdk2 during rat liver regeneration is associated with intranuclear rearrangements. Hepatology 29:385–395; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, H.; Chou, H. S.; Zhu, L. Requirement of cyclin E-cdk2 inhibition in p16INK4a-mediated growth suppression. Mol. Cell. Biol. 18:5284–5290; 1998.

    PubMed  CAS  Google Scholar 

  • Juan, C.; Gruenwald, S.; Darzynkiewicz, Z. Phosporylation of retinoblastoma susceptibility gene protein assayed in individual lymphocytes during their mitogenic stimulation. Exp. Cell Res. 237:104–110; 1998.

    Article  Google Scholar 

  • Kanoe, H.; Nakayama, T.; Murakami, H., et al. Amplification of the CDK4 gene in sarcomas: tumor specificity and relationship with the RB gene mutation. Anticancer Res. 18:2317–2322; 1998.

    PubMed  CAS  Google Scholar 

  • Kapuscinski, J.; Szer, W. Interactions of 4′6-diamidino-2-phenylindole with synthetic polynucleotides. Nucleic Acids Res. 6:3519–3534; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Keyomarsi, I.; Pardee, A. B. Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc. Natl. Acad. Sci. USA 90:1112–1116; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, T. K.; Buchholz, M. A.; Gabrielson, E. W., et al. A novel cytoplasmic substrate for cdk4 and cdk6 in normal and malignant epithelial derived cells. Oncogene 11:2077–2083; 1995.

    PubMed  CAS  Google Scholar 

  • Lee, W. H.; Bookstein, R.; Hong, F. et al. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235:1394–1399; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E. Y.; To, H.; Shew, J. Y., et al. Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science (Wash. DC) 241:218–221; 1988.

    Article  CAS  Google Scholar 

  • Lundberg, A. S.; Weinberg, R. A. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol. Cell. Biol. 18:753–761; 1998.

    PubMed  CAS  Google Scholar 

  • Mack, P. C.; Chi, S. G.; Meyers, F. J., et al. Increased RBI abnormalities in human primary prostate cancer following combined androgen blockade. Prostate 34:145–151; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Mancini, M. A.; Shan, B.; Nickerson, J. A., et al. The retinoblastoma gene product is a cell cycle-dependent, nuclear matrix-associated protein. Proc. Natl. Acad. Sci. USA 91:418–422; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, K. L.; Varley, J. M. Frequent alterations of cell cycle regulators in early-stage breast lesions as detected by immunohistochemistry. Br. J. Cancer 77:1460–1468; 1998.

    PubMed  CAS  Google Scholar 

  • Mittnacht, S. Control of pRB phosphorylation. Curr. Opin. Genet. Dev. 8:21–27; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Mittnacht, S.; Hinds, P. W.; Dowdy, S. F., et al. Modulation of retinoblastoma protein activity during the cell cycle. Cold Spring Harb. Symp. Quant. Biol. 56:197–209; 1991a.

    PubMed  CAS  Google Scholar 

  • Mittnacht, S.; Weinberg, R. A. G1/S phosphorylation of the retinoblastoma protein is associated with an altered affinity for the nuclear compartment. Cell 65:381–393; 1991b.

    Article  PubMed  CAS  Google Scholar 

  • Moore, J.D.; Yang, J.; Truant, R., et al. Nuclear import of cdk/cyclin complexes: identification of distinct mechanisms for import of cdk2/cyclin E and cdc2/cyclin B1. J. Cell Biol. 144:213–224; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Musgrove, E. A.; Lilischkis, R.; Cornish, A. L., et al. Expression of the cyclin-dependent kinase breast cancer. Int. J. Cancer 63:584–591; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. A.; Krucher, N. A.; Ludlow, J. W.. High molecular weight protein phosphatase type 1 dephosphorylates the retinoblastoma protein. J. Biol. Chem. 272:4528–4535; 1997a.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. A.; Ludlow, J. W. Characterization of the mitotic phase pPb-directed protein phosphatase activity. Oncogene 14:2407–2415; 1997b.

    Article  PubMed  CAS  Google Scholar 

  • Ohtani-Fujita N.; Fujita, T.; Aoike, A., et al. CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene 8:1063–1067; 1993.

    PubMed  CAS  Google Scholar 

  • Ozaki, T.; Saijo, M.; Murakami, K., et al. Complex formation between lamin A and the retinoblastoma gene product: identification of the domain on lamin A required for its interaction. Oncogene 9:2649–2653; 1994.

    PubMed  CAS  Google Scholar 

  • Pietilainen, T.; Lipponen, P.; Altomaa, S., et al. Expression of retinoblastoma gene protein (Rb) in breast cancer as related to established prognostic factors and survival. Eur. J. Cancer 31A:329–333; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Pines J. Cyclins and cyclin-dependent kinases—a biochemical view. Biochem. J. 308:697–711; 1995.

    PubMed  CAS  Google Scholar 

  • Planas-Silva, M. D.; Weinberg, R. A. Estrogen-dependent cyclin E-cdk2 activation through p21 redistribution. Mol. Cell. Biol. 17:4059–4069; 1997.

    PubMed  CAS  Google Scholar 

  • Porter-Jordan, K.; Lippman, M. E. Overview of the biologic markers of breast cancer. Hematol. Oncol. Clin. N. Am. 8:73–100; 1994.

    CAS  Google Scholar 

  • Puntoni, F.; Villa-Moruzzi, E. Association of protein phosphatase-1 delta with the retinoblastoma protein and reversible phosphatase activation in mitotic HeLa cells and in cells released from mitosis. Biochem. Biophys. Res. Commun. 235:704–708; 1997a.

    Article  PubMed  CAS  Google Scholar 

  • Puntoni, E.; Villa-Moruzzi, E. Phosphorylation of protein phosphatase-1 isoforms by cdc2 cyclin B in vitro. Mol. Cell. Biochem. 171:115–120; 1997b.

    Article  PubMed  CAS  Google Scholar 

  • Puntoni, F.; Villa-Moruzzi, E. Protein phosphatase-1 alpha, gamma-1, and delta—changes in phosphorylation and activity in mitotic HeLa cells released from mitotic block. Arch. Biochem. Biophys. 340:177–184; 1997c.

    Article  PubMed  CAS  Google Scholar 

  • Russo, A. A.; Tong, T.; Lee, J.-O., et al. Structural basis for inhibition of the cyclin-dependent kinase Cdk 6 by the tumor suppressor p16INK4a. Nature 17:237–243; 1998.

    Google Scholar 

  • Scovassi, A. I.; Stivala, L. A.; Rossi, L., et al. Nuclear association of cyclin D1 in human fibroblasts: tight binding to nuclear structures and modulation by protein kinase inhibitors. Exp. Cell Res. 237:127–134; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Shekhar, P. V. M.; Chen, M. L.; Werdell, J., et al. Transcriptional activation of functional endogenous estrogen receptor gene expression in MCF10AT cells—a model for early breast cancer. Int. J. Oncol. 13:907–915; 1998.

    PubMed  CAS  Google Scholar 

  • Soule, H. D.; Maloney, T. M.; Wolman, S. R., et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50:6075–6086; 1990.

    PubMed  CAS  Google Scholar 

  • Soule, H. D.; Vazquez, J.; Long, A., et al. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 51:1409–1416; 1973.

    PubMed  CAS  Google Scholar 

  • Stirzaker, C.; Millar, D. S.; Paul, C. L., et al. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res. 57:2229–2237; 1997.

    PubMed  CAS  Google Scholar 

  • Taylor, C. R.; Cote, R. J. Immunohistochemical markers of prognostic value in surgical pathology. Histol. Histopathol. 12:1039–1055; 1997.

    PubMed  CAS  Google Scholar 

  • T'Ang, A.; Varley, J. M.; Chakraborty, R., et al. Structural rearrangements of the retinoblastoma gene in human breast carcinoma. Science 242:263–266; 1988.

    Article  PubMed  Google Scholar 

  • Varley, J. M.; Armour, J.; Swallow, J. E., et al. The retinoblastoma gene is frequently altered leading to loss of expression in primary breast tumors. Oncogene 4:725–729; 1989.

    PubMed  CAS  Google Scholar 

  • Xu, L.; Sgroi, D.; Stemer, C. J., et al. Mutational analysis of CDKN2 (MTS1/p16 ink4) in human breast cancer. Cancer Res. 54:5262–5264; 1994.

    PubMed  CAS  Google Scholar 

  • Yen, A.; Coder, D.; Varvayanis, S. Concentration of RB protein in nucleaus vs. cytoplasm is stable as phosphorylation of RB changes during the cell cycle and differentiation. Eur. J. Cell Biol. 72:159–165; 1997.

    PubMed  CAS  Google Scholar 

  • Zhou, J.-N.; Linder, S. Expression of CDK inhibitor genes in immortalized and carcinoma derived breast cell lines. Anticancer Res. 16:1931–1936; 1996.

    PubMed  CAS  Google Scholar 

  • Zwijsen, R. M. L.; Klompmaker, R.; Wientjens, E. B. H. G. M., et al. Cyclin D1 triggers autonomous growth of breast cancer cells by governing cell cycle exit. Mol. Cell. Biol. 16:2554–2560; 1996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeannine Botos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botos, J., Barhoumi, R., Burghardt, R. et al. Rb localization and phosphorylation kinetics correlate with the cellular phenotype of cultured breast adenocarcinoma cells. In Vitro Cell.Dev.Biol.-Animal 38, 235–241 (2002). https://doi.org/10.1290/1071-2690(2002)038<0235:RLAPKC>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2002)038<0235:RLAPKC>2.0.CO;2

Key words

Navigation